Cellular topoisomerase I modulates origin binding by bovine papillomavirus type 1 E1.
نویسندگان
چکیده
In addition to viral proteins E1 and E2, bovine papillomavirus type 1 (BPV1) depends heavily on host replication machinery for genome duplication. It was previously shown that E1 binds to and recruits cellular replication proteins to the BPV1 origin of replication, including DNA polymerase alpha-primase, replication protein A (RPA), and more recently, human topoisomerase I (Topo I). Here, we show that Topo I specifically stimulates the origin binding of E1 severalfold but has no effect on nonorigin DNA binding. This is highly specific, as binding to nonorigin DNA is not stimulated, and other cellular proteins that bind E1, such as RPA and polymerase alpha-primase, show no such effect. The stimulation of E1's origin binding by Topo I is not synergistic with the stimulation by E2. Although the enhanced origin binding of E1 by Topo I requires ATP and Mg2+ for optimal efficiency, ATP hydrolysis is not required. Using an enzyme-linked immunosorbent assay, we showed that the interaction between E1 and Topo I is decreased in the presence of DNA. Our results suggest that Topo I participates in the initiation of papillomavirus DNA replication by enhancing E1 binding to the BPV1 origin.
منابع مشابه
Interactions of the papovavirus DNA replication initiator proteins, bovine papillomavirus type 1 E1 and simian virus 40 large T antigen, with human replication protein A.
Papovaviruses utilize predominantly cellular DNA replication proteins to replicate their own viral genomes. To appropriate the cellular DNA replication machinery, simian virus 40 (SV40) large T antigen (Tag) binds to three different cellular replication proteins, the DNA polymerase alpha-primase complex, the replication protein A (RPA) complex, and topoisomerase I. The functionally similar papi...
متن کاملRole of the ATP-binding domain of the human papillomavirus type 11 E1 helicase in E2-dependent binding to the origin.
Replication of the genome of human papillomaviruses (HPV) is initiated by the recruitment of the viral E1 helicase to the origin of DNA replication by the viral E2 protein, which binds specifically to the origin. We determined, for HPV type 11 (HPV-11), that the C-terminal 296 amino acids of E1 are sufficient for interaction with the transactivation domain of E2 in the yeast two-hybrid system a...
متن کاملIsolation of an amino-terminal region of bovine papillomavirus type 1 E1 protein that retains origin binding and E2 interaction capacity.
In vitro DNA binding results from a series of E1 proteins containing amino-terminal or carboxy-terminal truncations indicated that sequences between amino acids 121 and 284 were critical for origin binding. Additional binding experiments with E1 proteins containing internal, in-frame insertions or deletions confirmed the importance of the region defined by truncated E1 proteins and also demonst...
متن کاملCompetition for DNA binding sites between the short and long forms of E2 dimers underlies repression in bovine papillomavirus type 1 DNA replication control.
Papillomaviruses establish a long-term latency in vivo by maintaining their genomes as nuclear plasmids in proliferating cells. Bovine papillomavirus type 1 encodes two proteins required for viral DNA replication: the helicase E1 and the positive regulator E2. The homodimeric E2 is known to cooperatively bind to DNA with E1 to form a preinitiation complex at the origin of DNA replication. The v...
متن کاملTranscription factor-dependent loading of the E1 initiator reveals modular assembly of the papillomavirus origin melting complex.
Replication of bovine papillomavirus type 1 DNA absolutely requires the viral transcription factor E2 as well as the initiator E1, although E1 alone has all the activities expected of an initiator protein. E1 assembles on the DNA in a stepwise fashion and undergoes a transition in activities from site-specific DNA-binding protein to mobile helicase. Complex assembly is assisted by the viral tra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 80 9 شماره
صفحات -
تاریخ انتشار 2006